
CSB Sorting Algorithm

RinkleAswani, Anjali Arora, PallaSujitha

Department of Computer Science, G. B. Pant Engineering College,
Okhla, Delhi, India.

Abstract- Sorting is a term which is very commonly used in
computer science. It is a process of arranging items according
to a certain order or in a particular sequence. The algorithm
which are used for sorting generally consist of operations
that includes comparison, swapping and assignment, as well as
it may facilitate some other operations such as searching,
arranging and merging of data. In this paper we proposed a
new algorithm which is a combination of selection sort and
bubble sort. During each iteration the smallest and largest
elements are placed at its appropriate location. In our
proposed approach, we reduces the running time complexity
of selection sort in best case scenario and also improving the
running time of bubble sort in worst cases .Observations and
results are reported in support of the proposed idea.

Keywords: Combined Selection Bubble Sort, Bubble sort,
Selection sort, Best Case, Run time Complexity.

I. INTRODUCTION

Sorting is a term which refers to the arrangement of
elements into a sequence or in some kind of order from a
collection of unsorted data is termed as Sorting. For
example, a list of names can be arranged in their
lexicographic order; a list of eligible candidates can be
arranged according to their experiences.

Sorting has been the major area of research in computer
science as it is one of the important factors that helps in
optimization of other algorithms such as linear search &
binary search[1] etc. Some algorithms are simple which
uses less number of resources and are fast. Some are
spontaneous but complex. Before going into details of
specific algorithms, we should know some of the
operations that are used to analyze a sorting process i.e. in
order to sort a collection of unsorted elements, it is
necessary to have some systematic way to arrange the
elements. First of all, it is necessary to compare two
elements to check which element is smaller (or larger).
Therefore the total number of comparisons will be the most
common way to measure a sorting process. Secondly when
elements are not in their proper order with respect to one
another, then it is necessary to exchange them because it
incurs a lot of cost to perform these operations. So there is
the requirement of an algorithm which minimizes the
number of exchanges to improve the overall efficiency of
the algorithm [3]. However there exists a direct relationship
between the algorithm’s complexity and its
effectiveness[8].

We have abundant of searching and sorting algorithms
that have been developed to sort and search the elements in
different fashion. The number of swaps in any sorting
algorithms defines the computational complexity. If we
compute an ample number of elements than it will take
essential amount of resources which leads to increase the

computing time and directly accelerate the overhead.
Similarly if we take smaller list then the computing
resources and time takes less overhead [3].

There are different cases of measuring the performance
of sorting algorithms i.e. best case, average case & worst
case. For example, the best case scenario for a simple
linear search on an array occurs when the desired element
is the first element in the list. Average case is similar to
worst case, but in worst case scenario where the element to
be searched is present at the end of the list than the number
of swaps are comparatively greater than the average
case [1].

Before selecting the algorithm we have to look up on
certain factors such as memory space required for storing
elements, computational resources, computational time and
number of comparisons etc. As we know that their does not
exist a single algorithm which can overcome all the
problems, so to select the algorithm we have to consider all
the factors and choose the best algorithm accordingly[2].

II. RELATED WORK
A. SELECTION SORT

As the name implies selection sort selects the elements
on the basis of comparison and swapping. The working
principal of selection sort algorithm in first phases that it
selects the first element in the array assigning as the first
position(assuming the arrangement of elements are in
ascending order)and then it compares the value of the first
position with remaining elements in the list. If the first
element is smaller than it sets first position in the array else
it swaps the value of initial position with the smallest
element present in the array and it sets the first position.

Similarly in the second pass it compares the elements
from the second position (i.e. First element is already
being sorted), and set the position accordingly.
The selection sort algorithm:
Algorithm: Selection Sort (a[], n)
Here a is the unsorted input list and n is the size of the
array.
1. Repeat steps 2 to 4 from i=0 to n-1
2. Set min=a[i]
3. Repeat for count=i+1 to n
 If (a[count]<a[min])
 Set min=count
 End if
4. Interchange data at location a[count] and min

The above algorithm takes two loops one within the
other, the outer loop contains n number of comparisons and
the inner loops takes n-1 comparisons. Adding the number
of comparison we get:-
(n-1)+(n-2)+.....+3+2+1=n (n-1) /2 ……… (i)

RinkleAswani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2252-2255

www.ijcsit.com 2252

The comparison of shaded positions is done and the
smallest of the compared values is placed at the desired
location. After this phase the first element is the smallest
one placed at appropriate location shown below (Figure 1).

24 36 5 18 2 35 9 7

24 36 5 18 2 35 9 7

5 36 24 18 2 35 9 7

5 36 24 18 2 35 9 7

2 36 24 18 5 35 9 7

2 36 24 18 5 35 9 7

2 36 24 18 5 35 9 7

2 36 24 18 5 35 9 7

FIGURE 1: SHOWS THE FIRST PHASE OF SELECTION SORT.

The best case scenario of selection sort gives the
complexity of O(n2). Nonetheless when the list is in sorted
order as it has to perform n(n-1)/2 comparisons[4]. In
average and worst cases the number of comparisons
remains the same so its complexity remains the same
because of which, it is not suitable for handling large
files[5]. Complexity of the selection sort algorithm is
shown in table I.

Best Case Average Case Worst Case

O(n2) O(n2) O(n2)

TABLE I: COMPLEXITY OF SELECTION SORT.

B. BUBBLE SORT
Bubble sort algorithm works on the basis of comparison

and swapping. In the first phase of bubble sort, starting
element of the list is compared with the very next element
of the list and so on. It arranges the list with continuous
interchanging of elements if necessary due to this the
largest element is placed in its appropriate location means it
will be the last element in the list(assuming the list is sorted
in ascending order). The above method is repeated until all
the elements of the list are sorted[3].

Algorithm: Bubble Sort (a[], n)
Here a is the unsorted input list and n is the size of array.
1. Repeat step 2 for i = 0 to n-2
2. Repeat step 3 for j= 0 to n-i-2
3. If (a[j]>a[j+1])
 Interchange a[j] and a[j+1]
 End if

Above algorithm takes n-1 comparisons in one iterations
as well as n-1 passes to sort the unsorted input list. The best

case scenario of bubble sort gives the complexity of
O(n2).Nonetheless when the list is in sorted order then also
it has to perform (n-1) comparisons. In average and worst
cases the number of comparisons remains the same so its
complexity remains the same[3][7].

The comparison of shaded positions is done and the
largest of the compared values is placed at the latter
location, so that they are in proper order. After this phase
the last element is the largest one bubbled to its appropriate
location shown below (Figure 2):

24 36 5 18 2 35 9 7

24 36 5 18 2 35 9 7

24 5 36 18 2 35 9 7

24 5 18 36 2 35 9 7

24 5 18 2 36 35 9 7

24 5 18 2 35 36 9 7

24 5 18 2 35 9 36 7

24 5 18 2 35 9 7 36

FIGURE 2: BUBBLE SORT: THE FIRST PHASE

After the first phase the111111 largest value will be in

its appropriate location. In second phase we are left with n-
1 elements to sort and so on . After completing entire
phases, the smallest element will be placed at its
appropriate location[4],[6]. Complexity of the bubble sort
algorithm is shown in table II.

Best Case Average Case Worst Case

O(n2) O(n2) O(n2)
TABLE II: COMPLEXITY OF BUBBLE SORT.

III. PROPOSED SYSTEM: CSB SORT ALGORITHM

In this algorithm we are combining two sorts that is

selection and bubble sort. The CSB (Combined selection
bubble sort) is based on the collective use of selection and
bubble sort in one pass so that during each pass two
elements are arranged at a time, the smallest one is placed
to its appropriate place while bubbling up the maximum
element to its appropriate place in the array.

 By using the combination of both ,the number of swaps
are reduced considerably, as well as it overcomes the best
time complexity problem of selection sort by having the
best time complexity of O(n) instead of O (n2) .

RinkleAswani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2252-2255

www.ijcsit.com 2253

Algorithm: CSB Sort (a[],n)
Here a is the unsorted input list and n is the length of

array. After completion of the algorithm array will become
sorted:-
1. fswap = true[Set the flag to initiate the loop]
2. Repeat step 3 to 7 for i= 1 to n/2 and while fswap is true.
3. swap = false;

Min = a[i-1]
Pos = i-1

4. Repeat step 5 to 7
For j=i-1 to n-i-1

5. If a[j]>a[j+1]
 Swap a[j] and a[j+1]

 fswap =true.
End If

6. If (min> a[j])
 min =a[j] and pos = j;
 Else
 If (min> a[j+1])
 min = a[j+1]
 pos = j+1
 End If
 End If

7. If pos! = i-1
 Swap(a[i-1]and a[pos])
 End If

The above algorithm takes two loops one within the
other and the total number of comparisons are:
(n-1)+(n-3)+(n-5)+……..+1 = n2/4 ….…….(ii)

The comparison of shaded positions is done and the
largest of the compared values is placed at the latter
location, the minimum value is placed in the min variable
and its location in the pos variable. At the end of the phase
the minimum value is placed at its appropriate location and
the largest element is bubbled to its appropriate location.
Thus setting up two locations in each phase as shown
below (Figure 3) :

Pos
1

Min
24

24 36 5 18 2 35 9 7

Pos
1

Min
24 24 36 5 18 2 35 9 7

Pos
2

Min
5

24 5 36 18 2 35 9 7

Pos
2

Min
5

24 5 18 36 2 35 9 7

Pos
4

Min
2

24 5 18 2 36 35 9 7

Pos
4

Min
2

24 5 18 2 35 36 9 7

Pos
4

Min
2

24 5 18 2 35 9 36 7

2 5 18 24 35 9 7 36

FIGURE 3: CSB SORT: THE FIRST PHASE

After completing entire phases, all the elements will be
placed at its appropriate location and complexity of the
CSB sort algorithm is shown in table III.

Best Case Average Case Worst Case

O(n) O(n2) O(n2)

TABLE III: COMPLEXITY OF CSB SORT.

IV. RESULTS AND ANALYSIS
The following graphs demonstrate the performance of

selection, bubble, and CSB sort with respect to sorted
list(best case), random list (average case) and reverse
sorted list(worst case) The comparisons of iterations. The
CSB Algorithm has the complexity of O(n) i.e. in the best
case, O(n2) i.e. in the average case and O(n2) i.e. in the
worst case. The time complexity is the same but it reduces
the number of swaps operations (as compared to bubble
sort) and number of comparisons (as compared to bubble
sort and selection sort).

FIGURE 4: PERFORMANCE OF ALGORITHMS (SORTED LIST)

FIGURE 5: PERFORMANCE OF ALGORITHMS (RANDOM LIST)

FIGURE 6: PERFORMANCE OF ALGORITHMS (REVERSELY

ORDERED LIST)

RinkleAswani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2252-2255

www.ijcsit.com 2254

V. CONCLUSION
The proposed algorithm has a significant enhancement

over the original sorting algorithms. In best case scenario of
selection sort, it includes unnecessary comparisons of
elements when the list is in sorted order and it takes n-1
iterations, but in case of CSB Algorithm no. of iterations
are reduced as well as unnecessary comparisons are
avoided. This paper shows substantial advantage over
classical algorithms it actually improves the running time
complexity of selection sort in best case scenario and also
improves the running time of bubble sort in worst cases by
doing so we are actually minimizing the number of
comparisons or the number of exchange which enhances
the inefficient algorithms.

REFERENCE
[1] P. Dhivakar et al, Dual Sorting Algorithm Based on Quick Sort,

International Journal of Computer Science and Mobile Applications,
Vol.1 Issue. 6, December- 2013, pg. 1-10,SSN: 2321-8363

[2] Md. Khairullah , Enhanced Worst Sorting Algorithm, International
Journal of Advanced Science and Technology Vol. 56, July, 2013.

[3] Brad Miller and David Ranum, Welcome to Problem Solving with
Algorithms &Data Structures , Available at
http://interactivepython.org
/courselib/static/pythonds/index.html(accessed on 1st Feb 2014).

[4] Selection Sort, Available at http://www.personal.kent.ed
~rmuhamma / Algorithms/My
Algorithm/Sorting/Selectionsort.htm. (accessed on 24rd March
2014).

5] The Art of Computer Programming, Volume 3: Sorting and Searching,
Third Edition. Addison–Wesley, 1997.ISBN 0-201-89685-0. Pages
138– 141 of Section 5.2.3: Sorting by Selection.

[6] Sorting by Insertion", The Art of Computer Programming, 3. Sorting
and Searching (second ed.), Addison-Wesley, 1998, pp. 80–
105, ISBN 0-201- 89685-0.

[7] Paul E. Black and Bob Bockholt, "bidirectional bubble sort", in
Dictionary of Algorithms and Data Structures (online), Paul E.
Black, ed., U.S. National nstitute of Standards and
Technology. 24 August 2009. (accessed: 15 Feb 2014).

[8] R. S. Salaria, Data Structure & Algorithms 4rd Edition 2006.

AUTHORS PROFILE

Ms. Rinkle Aswani is working as a Assistant
Professor in computer Science Department in G. B.
Pant Engineering College, Delhi, India. She
completed her ALCCS(Eqv-M.Tech.) from IETE,
Delhi in 2013. Her Area of interest are Algorithms,
Computer Graphics, Data Structure, Cyber Crime &
laws, Networking & Agile. She has an experience of
over 10 years as an academician.

Ms. Anjali Arora is working as a Assistant Professor
in G. B. Pant Engineering College, Delhi, India. She
completed her M.Tech. from Banasthali University,
Jaipur in 2012. Her Area of interest are Algorithms,
Data warehouse & mining, DBMS, Computer
Networks. She has published various papers in
journals and conferences.

 Ms. Palla Sujitha is working as a Assistant
Professor in G. B. Pant Engineering College, Delhi,
India. She completed her M.Tech. from Indraprastha
Engineering College, NCR Delhi in 2012. Her Area
of interest are Algorithms, Data Structures,
Computer Networks, Operating System. She has
published various papers in international & national
conferences.

RinkleAswani et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 2252-2255

www.ijcsit.com 2255

